Re-exam, $28^{\text {th }}$ April 2014 PPP
(3) $1 . \Delta^{t+}$: unu all $\uparrow \uparrow \uparrow$ configuration
\rightarrow Paski exclarion prinajple vidated?
\rightarrow Solution: colcre labal (RGB)

$$
\psi_{\Delta}=\psi_{\substack{\text { glamer }}} \cdot \psi_{\text {spen }} \cdot \psi_{\text {spense }} \cdot \psi_{\text {colar }}
$$

even even ever hence odd!

$$
\begin{aligned}
& \rightarrow \text { GAdism. } \\
& \text { RGB-GRB+ } 6 B R-B G R \\
& \text { etc. }
\end{aligned}
$$

2. Use Lurentz Inlariance:

$$
\begin{aligned}
& E_{l_{A b}, t a t}^{2}-P_{l a b, t a l}^{2}=E_{c m, t a l}^{2}-P_{c m, t o l}^{2}=M_{\Delta}^{2} \\
& 11
\end{aligned}
$$

(3) cont d
3. $\Delta \longrightarrow \frac{L}{4}+N$

$$
\begin{aligned}
& I\left(J^{P}\right): \frac{3}{2}\left(\frac{3^{+}}{2}\right) \longrightarrow 1\left(0^{-}\right)+\frac{1}{2}\left(\frac{1}{2}\right) \\
& P_{A R-I_{3}}=P_{\pi} \cdot P_{N} \cdot(-1)^{L}=(-1)^{L+1} \Rightarrow L \text { odd } \\
& I=\frac{L+5:}{L=1: 1+\frac{1}{2}=\left(\frac{1}{2}, \frac{3}{2}\right) 0, K .} \\
& L=3: 3+\frac{1}{2}=\left(\frac{5}{2}, \frac{7}{2}\right) \Rightarrow N_{c}
\end{aligned}
$$

efc
$L=1$ possible P-rave.
4. $\Delta^{0} \rightarrow \pi^{0}+n$

$$
-\bar{u}+p
$$

Evaluate isorpion aulteglets:

$$
\begin{aligned}
& T_{+}\left|\pi^{-} n\right\rangle=\left(T_{+, \pi}+T_{+, N}\right)\left|\pi_{i n}\right\rangle \\
& =\left[\underline{\underline{\sqrt{2}}}\left|\pi_{n}^{0}\right\rangle+1 \cdot\left|\pi^{-} \Gamma\right\rangle\right] / \sqrt{3} \\
& \text { nurmalzada }
\end{aligned}
$$

$\left.\left\langle\Delta^{0} \mid \pi^{0} n\right\rangle^{2}=\frac{2}{3}\right\}$ Branchies fraction B
$\left\langle\Delta^{0} \mid \pi^{0} p\right\rangle^{2}=\frac{1}{3}$
(3) cat

$$
\sigma=\left(\frac{25}{p^{2}}\right) \frac{\Gamma_{\Delta-i p} \Gamma_{\Delta \rightarrow \pi_{i n}}}{\left(E_{c t}-H_{1}\right)^{2}+\Gamma^{2} / 4}
$$

Nute $\Gamma_{\Delta-\pi \bar{p}}=B_{\Delta-\bar{a}^{-} p} \cdot \Gamma=\frac{1}{3} \Gamma$

$$
\Gamma_{\Delta \rightarrow \pi_{i}^{\prime}}=B_{a \rightarrow \pi_{i} \sigma_{n}} \Gamma=\frac{2}{3} \Gamma
$$

$$
E_{C M}=M_{a}
$$

$$
\begin{aligned}
& E_{C M}=M_{c} \\
& \Rightarrow \sigma=\left(\frac{2 \pi}{p^{2}}\right) \frac{\frac{2}{9} \Gamma^{2}}{\Gamma^{2} / 4}=\frac{16 \pi}{9 p^{2}} \otimes(\hbar c)^{2} \\
& \angle \text { to get } \\
& \text { Right }
\end{aligned}
$$

Right unids
P? (horans)
$\overrightarrow{T^{-}} \longrightarrow \stackrel{\leftarrow}{P}$ in C.M. frame:
(1) $E_{T}+E_{P}=M_{\Delta} \quad(E-$ concenation $)$
(2) $\left|P_{T}\right|=\left|P_{P}\right| \equiv P$ (mim-conserustion)
(2)

$$
\begin{aligned}
& P_{\pi}^{2}=P_{p}^{2} \Leftrightarrow P_{\pi}^{2}+m_{n}^{2}+m_{p}^{2}=P_{p}^{2}+m_{p}^{2}+m_{\pi}^{2} \\
& \Leftrightarrow E_{\pi}^{2}+m_{p}^{2}=E_{p}^{2}+m_{\pi}^{2} \\
&+(c) \\
& \Leftrightarrow E_{\pi}^{2}+m_{p}^{2}=\left(M_{\Delta}-E_{\pi}\right)^{2}+m_{\pi}^{2} \\
&=M_{p}^{2}+E_{a}^{2}-2 M_{\Delta} E_{\pi}+m_{\pi}^{2} \\
& \Rightarrow E_{\pi}=\frac{M_{a}^{2}+m_{a}^{2}-m_{p}^{2}}{2 M_{\Delta}}=26,7 \\
& \mathrm{MeV} \\
& P_{\pi}=P_{p}=p=\sqrt{E_{\pi}^{2}-m_{a}^{2}}=227.7 \mathrm{HeV}
\end{aligned}
$$

$$
\left(1 b=100 \mathrm{fm}^{2}\right)
$$

$$
\begin{aligned}
\Rightarrow \sigma=\frac{16 \pi}{q(2277)^{2} \operatorname{rev}^{2}} \cdot(197)^{2} M e v^{2} f_{m}^{2}=4,2 f_{m}^{2} & =4,2 \cdot 10^{-2} \mathrm{bmans} \\
& =42 \mathrm{mb}
\end{aligned}
$$

IIa

$$
\begin{gathered}
E_{c m}=\sqrt{s}=270+270=540 \mathrm{GeV}=E_{j e t}+E_{W} \\
\vec{p}_{j e t}+\vec{p}_{W}=0 \\
E_{c m}=E_{j e t}+E_{W}=p_{W}+\sqrt{p_{W}^{2}+m_{W}^{2}} \rightarrow\left(E_{c m}-p_{W}\right)^{2}=p_{W}^{2}+m_{W}^{2} \\
p_{W}=\frac{E_{c m}^{2}-m_{W}^{2}}{2 E_{c m}} \\
\vec{p}_{W}=\vec{p}_{e}+\vec{p}_{\bar{v}_{e}}
\end{gathered}
$$

Energy and momentum of electron and neutrino must be equal for maximum opening angle.

Use invariant mass to get the opening angle
$m_{W}^{2}=\left(E_{v}+E_{e}\right)^{2}-\left(\vec{p}_{e}+\vec{p}_{v}\right)^{2}$
$\left|p_{e}\right|=\left|p_{v}\right|=E_{e}=E_{v}=\frac{E_{W}}{2}=\frac{E_{c m}-\left|p_{W}\right|}{2}=\frac{E_{c m}-\frac{E_{c m}^{2}-m_{W}^{2}}{2 E_{c m}}}{2}=\frac{E_{c m}^{2}+m_{W}^{2}}{4 E_{c m}}=x$
$m_{W}^{2}=(2 x)^{2}-\left(2 x^{2}+2 x^{2} \cos \theta_{e v}\right)=2 x^{2}\left(1-\cos \theta_{e v}\right)$
$\theta_{e v}=\operatorname{acos}\left(1-\frac{m_{W}^{2}}{2 x^{2}}\right)=\operatorname{acos}\left(1-\frac{8 E_{c m}^{2} m_{W}^{2}}{\left(E_{c m}^{2}+m_{W}^{2}\right)^{2}}\right)=\operatorname{acos}\left(1-\frac{8 * 540^{2} * 80^{2}}{\left(540^{2}+80^{2}\right)^{2}}\right)=34^{\circ}$
IIb (for answers on band c see pages 230 and 231 of book)
The fact that $W \rightarrow l^{+} v_{l}$ has the same branching for all $l=e, \mu, \tau \approx 10.8 \%$
IIc
$\mathrm{W}^{+} \rightarrow \mathrm{u} \bar{d}^{\prime}$ or $c \bar{s}^{\prime}$ and not $\mathrm{t} \overline{\mathrm{b}}^{\prime}\left(\mathrm{m}_{\mathrm{t}}>\mathrm{m}_{\mathrm{W}}\right)$ each quark pair has three possibilities (color) means 6 possibilities to make hadrons as compared to a lepton pair $6^{*} 10.8 \%=65 \%$ is close to the number in the PDG datasheet (68%, we ignore all details of phase space and higher order diagrams)

The Cabbibo angle does not play a role the generation does not enter in describing the d^{\prime} and s^{\prime} thus we working with an approximate unitary transformation going from $(\mathrm{d}, \mathrm{s}) \rightarrow\left(\mathrm{d}^{\prime}, \mathrm{s}^{\prime}\right)$.

IId (see book p 223)
$\Gamma_{\mathrm{lv}_{1}}=\alpha_{W} \mathrm{M}_{\mathrm{W}}=10.8 \%$ of $2.08 \mathrm{GeV} \quad \alpha_{W}=\frac{0.108 \times 2.08}{80}=2.79 \times 10^{-3}$ or $\frac{1}{\alpha_{w}}=360$

IIIa

Determine energy threshold:
$E_{e}+m_{p}=E_{v}+E_{n} \xrightarrow{\text { threshold }} E_{n} \approx m_{n}+\frac{p_{e}^{2}}{2 m_{n}}$
$\vec{p}_{e}=\vec{p}_{v}+\vec{p}_{n} \xrightarrow{\text { threshold }} \vec{p}_{n}$
Ignoring recoil threshold is $E_{e}=m_{n}-m_{p}=2.933 \mathrm{MeV}$ with recoil solve quadratic equation

$$
E_{e}+m_{p}=m_{n}+\frac{E_{e}^{2}-m_{e}^{2}}{2 m_{n}}
$$

$E_{e}=m_{n}-m_{p}-\frac{m_{e}^{2}}{2 m_{n}}=2.932 \mathrm{MeV}$
Electron neutrino is born and propagates as mass eigensstates. May assume independent propagations (incoherent) therefore $0.85^{2} m_{1}$ and $0.53^{2} m_{2}$ and $0 m_{3}$ note that total probability is 1 (one). When they arrive on Earth m_{1} has probability 0.85^{2} to be an electron neutrino, m_{2} has 0.53^{2} electron probability

Thus we have a probability $0.85^{4}+0.53^{4}=0.60$ to be an electron neutrino.

IIIb

Equal amounts of each neutrino and antineutrino i.e. 1/6 after propagation because of unitarity also 1/6

IIIc

Only middle diagram possible.
IIId
$\Delta t=\frac{L}{v_{1}}-\frac{L}{v_{2}}=\frac{L}{c}\left(\frac{1}{\beta_{1}}-\frac{1}{\beta_{2}}\right)$
$\beta=\frac{p}{E}=\frac{\sqrt{E^{2}-m^{2}}}{E} \approx 1-\frac{1}{2} \frac{m^{2}}{E^{2}}$
$\begin{aligned} & \Delta t=\frac{L}{c}\left(1+\frac{1}{2} \frac{m^{2}}{E_{1}^{2}}-1-\frac{1}{2} \frac{m^{2}}{E_{2}^{2}}\right) \rightarrow \frac{m^{2} L}{2 c}\left(\frac{1}{E_{1}^{2}}-\frac{1}{E_{2}^{2}}\right) \rightarrow m^{2}=\frac{\frac{2 c \Delta t}{L}}{\left(\frac{1}{E_{1}^{2}}-\frac{1}{E_{2}^{2}}\right)} \\ &=2 \times \frac{5.3}{5.3} \times 10^{-12} \times\left(1-\frac{1}{9}\right)[\mathrm{MeV}]^{2} \rightarrow m=\sqrt{\frac{18}{8}} \approx 1.4 \mathrm{eV}\end{aligned}$
IIIe p330
$<m>=\sum_{i}\left|U_{e i}\right|^{2} m_{i}$ (the weighted sum (sum of weights is one) of probabilities that m_{i} contributes)
IIId
$<m^{2}>=\sum_{i}\left|U_{e i}\right|^{2} m_{i}^{2}$
Same argument but for m_{i}^{2}.
(4)

1. S-finction : elastic sattering of eleation on particle wigh mass $m \Rightarrow x=\frac{q^{2}}{2 m 0}=1$ (ERP
Hence, δ finction garuantees
that $X=1$ Note, $Q^{2}=M^{2}+240-w^{2}$
For elatic scattering $M=W$

$$
\Rightarrow Q^{2}=2 M u
$$

e_{ε}^{2}; follm, frum $\alpha\left(r e^{2}\right) \rightarrow e_{\dot{q}} \alpha$, since:

2. Jer a pardon i:

$$
W_{2}^{i}=e_{i}^{2} \delta\left(\nu-\frac{G^{2}}{2 \varepsilon M_{p}}\right)
$$

\Rightarrow incoherent sum with prechability density $f_{i}(z)$:

$$
\begin{aligned}
& W_{2}=\sum_{i} \int_{i}^{2} \delta\left(0-\frac{c^{2}}{2 z \mu_{p}}\right) f_{i}(z) d z \\
&=\delta\left[\frac{\partial}{z}\left(z-\frac{e^{2}}{2 \mu_{0} 0}\right)\right] \\
&=\delta\left[\frac{\partial}{z}(z-x)\right] \\
&=\frac{z}{\partial} \delta(z-x) \\
& W_{2}=\sum_{i}\left(e_{i}^{2} \frac{z}{\partial} \delta(z-x) f_{i}(z) d z\right.=\frac{1}{\partial} \sum_{i} e_{i}^{2}\left(z f_{i}(z) \delta(z-x) d z\right. \\
&=\frac{1}{\delta} \sum_{i} e_{i}^{2} x f_{i}(x) \\
& \Rightarrow D \cdot W_{2}=\sum_{i} e_{i}^{2} x f_{i}(x) \equiv F_{2}(x)
\end{aligned}
$$

(4) contl
3. The firafocdar function F_{2} (alsu $F_{1}=H_{p} W_{1}$) onl 7 depends upun 1 variable, x, independent on $Q^{?}$! \Rightarrow parton is point-like
4.

vistena gumank
arioud $\frac{1}{3}$, but smesred due to glacn exchtrage.

